Circular Flow in Mono-directed Eulerian Signed Graphs

Zhouningxin Wang

IRIF, Université Paris Cité

(Joint work with Jiaao Li, Reza Naserasr, and Xuding Zhu)

14th April 2022

イロト イヨト イヨト イヨト

Э

1/32

- Start from Jaeger's flow conjecture
- Circular coloring of signed graphs
- Circular flow in mono-directed signed graphs
- Bipartite analog of Jaeger-Zhang conjecture
- 2 Circular flow in mono-directed Eulerian signed graphs
 - Preliminaries
 - Flows in Eulerian signed graphs
 - Coloring of signed bipartite planar graphs

3 Conclusion

- Results
- Questions

Start from Jaeger's flow conjecture

Conclusion

Jaeger's circular flow conjecture

Tutte's 3-flow conjecture

Every 4-edge-connected graph admits a nowhere-zero 3-flow.

Jaeger's circular flow conjecture

Every 4k-edge-connected graph admits a circular $\frac{2k+1}{k}$ -flow.

- It has been disproved for k ≥ 3 [M. Han, J. Li, Y. Wu, and C.Q. Zhang 2018];
- It has been verified that the 6k-edge-connectivity is a sufficient condition for a graph to admit a circular ^{2k+1}/_k-flow [L. M. Lovász, C. Thomassen, Y. Wu, and C.Q. Zhang 2013].

Start from Jaeger's flow conjecture

Duality: circular flow and circular coloring

For any positive integers p, q with $p \ge 2q$, a circular $\frac{p}{q}$ -flow in a graph G is a pair (D, f) where D is an orientation on G and $f : E(G) \to \mathbb{Z}$ satisfying that $q \le |f(e)| \le p - q$ and for each vertex v, $\sum_{(v,w)\in D} f(vw) - \sum_{(u,v)\in D} f(uv) = 0$.

For any positive integers p, q with $p \ge 2q$, a circular $\frac{p}{q}$ -coloring of a graph G is a mapping $\varphi : V(G) \to \{1, 2, ..., p\}$ such that $q \le |f(u) - f(v)| \le p - q$ for each edge $uv \in E(G)$.

Lemma [L. A. Goddyn, M. Tarsi, and C.Q. Zhang 1998]

A plane graph G admits a circular $\frac{p}{q}$ -coloring if and only if its dual graph G^* admits a circular $\frac{p}{q}$ -flow.

Start from Jaeger's flow conjecture

Jaeger-Zhang Conjecture

Jaeger-Zhang Conjecture [C.-Q. Zhang 2002]

Every planar graph of odd-girth at least 4k + 1 admits a circular $\frac{2k+1}{k}$ -coloring.

- k = 1: Grötzsch's theorem;
- k = 2: true for odd-girth 11 [Z. Dvořák and L. Postle 2017; D. Cranston and J. Li 2020];
- k = 3; true for odd-girth 17 [D. Cranston and J. Li 2020; L. Postle and E. Smith-Roberge 2022];
- *k* ≥ 4:
 - true for odd-girth 8k 3 [X. Zhu 2001];
 - true for odd-girth $\frac{20k-2}{3}$ [O.V. Borodin, S.-J. Kim, A.V. Kostochka and D.B. West 2002];
 - true for odd-girth 6k + 1 [L. M. Lovász, C. Thomassen, Y. Wu and C. Q. Zhang 2013].

 Introduction
 Circular flow in mono-directed Eulerian signed graphs
 Conclus

 0000000000
 000000000
 00000

 Circular coloring of signed graphs
 Signed graphs

- A signed graph (G, σ) is a graph G together with an assignment $\sigma : E(G) \to \{+, -\}$.
- The sign of a closed walk (especially, a cycle) is the product of signs of all the edges in it.
- A switching at vertex v is to switch the signs of all the edges incident to this vertex.

Theorem [T. Zaslavsky 1982]

Signed graphs (G, σ) and (G, σ') are switching equivalent if and only if they have the same set of negative cycles.

• The negative-girth of a signed graph is the length of a shortest negative cycle.

Circular coloring of signed graphs

Circular flow in mono-directed Eulerian signed graphs

Conclusion

Homomorphism of signed graphs

- A homomorphism of (G, σ) to (H, π) is a mapping φ from V(G) and E(G) to V(H) and E(H) respectively, such that the adjacency, the incidence and the signs of closed walks are preserved.
- A homomorphism of (G, σ) to (H, π) is said to be edge-sign preserving if furthermore, it preserves the signs of the edges.
- $(G, \sigma) \to (H, \pi) \Leftrightarrow \exists \sigma' \equiv \sigma, (G, \sigma') \xrightarrow{s.p.} (H, \pi).$

Circular coloring of signed graphs

Conclusion

Circular coloring of signed graphs

Let C^r be a circle of circumference r.

Definition [R. Naserasr, Z. Wang and X. Zhu 2021]

Given a signed graph (G, σ) with no positive loop and a real number r, a circular r-coloring of (G, σ) is a mapping $\varphi: V(G) \to C^r$ such that for each positive edge uv of (G, σ) ,

 $d_{C'}(\varphi(u),\varphi(v))\geq 1,$

and for each negative edge uv of (G, σ) ,

$$d_{C'}(\varphi(u),\overline{\varphi(v)}) \geq 1$$

The circular chromatic number of (G, σ) is defined as

 $\chi_c(G,\sigma) = \inf\{r \ge 1 : (G,\sigma) \text{ admits a circular } r\text{-coloring}\}.$

Circular flow in mono-directed Eulerian signed graphs

Conclusion

Circular coloring of signed graphs

Circular $\frac{p}{q}$ -coloring of signed graphs

For
$$i, j, x \in \{0, 1, \dots, p-1\}$$
,

$$d_{(\text{mod }p)}(i,j) = \min\{|i-j|, p-|i-j|\} \text{ and } \bar{x} = x + \frac{p}{2} \pmod{p}.$$

Given a positive even integer p and a positive integer q satisfying $q \leq \frac{p}{2}$, a circular $\frac{p}{q}$ -coloring of a signed graph (G, σ) is a mapping $\varphi: V(G) \rightarrow \{0, 1, \dots, p-1\}$ such that for any positive edge uv,

$$q \leq |\varphi(u) - \varphi(v)| \leq p - q,$$

and for any negative edge uv,

$$|\varphi(u)-\varphi(v)|\leq rac{p}{2}-q \ \ ext{or} \ \ |\varphi(u)-\varphi(v)|\geq rac{p}{2}+q.$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q () 9/32

Circular flow in mono-directed signed graphs

Orientation on signed graphs

- A signed graph is bi-directed if each edge is assigned with two directions at both of its ends such that
 - in a positive edge, the ends are both directed from one endpoint to the other,
 - in a negative edge, either both ends are directed outward or both are directed inward.
- A signed graph is mono-directed if each edge is assigned with one direction.

Figure: A bi-directed signed K_3 Figure: A mono-directed signed K_3

Circular flow in mono-directed signed graphs

Circular $\frac{p}{q}$ -flow in mono-directed signed graphs

Definition [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Given a positive even integer p and a positive integer q where $q \leq \frac{p}{2}$, a circular $\frac{p}{q}$ -flow in a signed graph (G, σ) is a pair (D, f) where D is an orientation on G and $f : E(G) \to \mathbb{Z}$ satisfies the followings.

- For each positive edge e, $|f(e)| \in \{q, \dots, p-q\}$.
- For each negative edge e, $|f(e)| \in \{0, \dots, \frac{p}{2} - q\} \cup \{\frac{p}{2} + q, \dots, p - 1\}.$
- For each vertex v of (G, σ) , $\sum_{(v,w)\in D} f(vw) = \sum_{(u,v)\in D} f(uv)$.

The circular flow index of (G, σ) is defined to be

$$\Phi_{c}(G,\sigma) = \min\{\frac{p}{q} \mid (G,\sigma) \text{ admits a circular } \frac{p}{q}\text{-flow}\}.$$

11/32

Circular flow in mono-directed Eulerian signed graphs

Conclusion 000000

Circular flow in mono-directed signed graphs

Circular $\frac{2\ell}{\ell-1}$ -flow and circular $\frac{2\ell}{\ell-1}$ -coloring

Let k be a positive integer.

- A signed graph (G, +) admits a circular ^{2k+1}/_k-coloring if and only if (G, +) → C_{2k+1}.
- A signed bipartite graph (G, σ) admits a circular ^{4k}/_{2k-1}-coloring if and only if (G, σ) → C_{-2k}. [R. Naserasr and Z. Wang 2021]

Lemma [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

A signed plane graph (G, σ) admits a circular $\frac{p}{q}$ -coloring if and only if its dual signed graph (G^*, σ^*) admits a circular $\frac{p}{q}$ -flow, i.e.,

$$\chi_c(G,\sigma) \leq rac{p}{q} \ \Leftrightarrow \ \Phi_c(G^*,\sigma^*) \leq rac{p}{q}.$$

Circular flow in mono-directed Eulerian signed graphs

Conclusion 000000

Circular flow in mono-directed signed graphs

Example

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 Q (~ 13/32)

Bipartite analog of Jaeger-Zhang conjecture

Signed bipartite analog of Jaeger-Zhang conjecture

Signed bipartite analog of Jaeger's circular flow conjecture

Every g(k)-edge-connected Eulerian signed graph admits a circular $\frac{4k}{2k-1}$ -flow.

Signed bipartite analog of Jaeger-Zhang conjecture

Every signed bipartite planar graph of negative-girth at least f(k) admits a homomorphism to C_{-2k} .

- It was conjectured that f(k) = 4k − 2 [R. Naserasr, E. Rollová, and É. Sopena 2015];
- However, for k = 2, 8 is proved to be the best negative-girth condition [R. Naserasr, L-A. Pham, and Z. Wang 2022];
- For any k ≥ 3, true for negative-girth 8k 2 [C. Charpentier, R. Naserasr, and E. Sopena 2020].

Circular flow in mono-directed Eulerian signed graphs

Conclusion 000000

Bipartite analog of Jaeger-Zhang conjecture

Main results

Theorem [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Every (6k - 2)-edge-connected Eulerian signed graph admits a circular $\frac{4k}{2k-1}$ -flow.

Theorem [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Every signed bipartite planar graph of negative-girth at least 6k - 2 admits a homomorphism to C_{-2k} .

- Start from Jaeger's flow conjecture
- Circular coloring of signed graphs
- Circular flow in mono-directed signed graphs
- Bipartite analog of Jaeger-Zhang conjecture

2 Circular flow in mono-directed Eulerian signed graphs

- Preliminaries
- Flows in Eulerian signed graphs
- Coloring of signed bipartite planar graphs

3 Conclusion

- Results
- Questions

Preliminaries

Circular flow in mono-directed Eulerian signed graphs

Conclusion 000000

$(2k,\beta)$ -orientation on graphs

Definition [J. Li, Y. Wu and C.Q. Zhang 2020]

Given a graph G, a function $\beta : V(G) \rightarrow \{0, \pm 1, \dots, \pm k\}$ is a $(2k, \beta)$ -boundary of G if for every vertex $v \in V(G)$,

$$\sum_{v\in V(G)}eta(v)\equiv 0 \pmod{2k}$$
 and $eta(v)\equiv d(v) \pmod{2}.$

Given a subset $A \subset V(G)$, we define $\beta(A) \in \{0, \pm 1, \dots, \pm k\}$ such that $\beta(A) \equiv \sum_{v \in A} \beta(v) \pmod{2k}$.

Given a $(2k, \beta)$ -boundary β , an orientation D on G is called a $(2k, \beta)$ -orientation if for every vertex $v \in V(G)$,

$$\overleftarrow{d_D}(v) - \overrightarrow{d_D}(v) \equiv \beta(v) \pmod{2k}.$$

イロト イポト イヨト イヨト

Preliminaries

Circular flow in mono-directed Eulerian signed graphs

Conclusion

$(2k,\beta)$ -orientation on graphs

Theorem [L.M. Lovasz, C. Thomassen, Y. Wu and C.Q. Zhang 2013; J. Li, Y. Wu and C.Q. Zhang 2020]

Let G be a graph with a $(2k,\beta)$ -boundary β for $k \geq 3$. Let z_0 be a vertex of V(G) such that $d(z_0) \leq 2k - 2 + |\beta(z_0)|$. Assume that D_{z_0} is an orientation on $E(z_0)$ which achieves the boundary $\beta(z_0)$. Let $V_0 = \{v \in V(G) \setminus \{z_0\} \mid \beta(v) = 0\}$. If $V_0 \neq \emptyset$, we let v_0 be a vertex of V_0 with the smallest degree. Assume that $d(A) \geq 2k - 2 + |\beta(A)|$ for any $A \subset V(G) \setminus \{z_0\}$ with $A \neq \{v_0\}$ and $|V(G) \setminus A| > 1$. Then the partial orientation D_{z_0} can be extended to a $(2k, \beta)$ -orientation on the entire graph G.

Theorem [J. Li, Y. Wu and C.Q. Zhang 2020]

Let G be a (3k - 3)-edge-connected graph, where $k \ge 3$. For any $(2k, \beta)$ -boundary of G, G admits a $(2k, \beta)$ -orientation.

イロン 不通 とうほう イヨン

Flows in Eulerian signed graphs

Circular flow in mono-directed Eulerian signed graphs

Conclusion

Circular $\frac{4k}{2k-1}$ -flow in Eulerian signed graphs

Tutte's lemma [W.T. Tutte 1954]

If a graph admits a modulo k-flow (D, f), then it admits an integer k-flow (D, f') such that $f'(e) \equiv f(e) \pmod{k}$ for every edge e.

Lemma [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

An Eulerian signed graph (G, σ) admits a circular $\frac{4k}{2k-1}$ -flow if and only if it admits a modulo 4k-flow (D, f) such that

- for each positive edge e, $f(e) \in \{2k 1, 2k + 1\}$;
- for each negative edge e, $f(e) \in \{-1, 1\}$.

Flows in Eulerian signed graphs

Conclusion

Circular $\frac{4k}{2k-1}$ -flow in Eulerian signed graphs

Given a signed graph (G, σ) , let $d^+(v)$ denote the number of positive edges incident to v in (G, σ) .

Theorem [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Given a positive integer k, an Eulerian signed graph (G, σ) admits a $\frac{4k}{2k-1}$ -flow if and only if the underlying graph G admits a $(4k, \beta)$ -orientation with $\beta(v) \equiv 2k \cdot d^+(v) \pmod{4k}$ for each vertex $v \in V(G)$. Circular flow in mono-directed Eulerian signed graphs

Conclusion

Flows in Eulerian signed graphs

Sketch of the proof

- Assume that D is a (4k, β)-orientation on G with β(v) ≡ 2k ⋅ d⁺(v) (mod 4k). Let D' be an arbitrary orientation on G.
- Define f₁: E(G) → Z_{4k} such that f₁(e) = 1 if e is oriented in D the same as in D' and f₁(e) = −1 otherwise. We claim that such a pair (D', f₁) is a modulo 4k-flow in G satisfying that ∂_{D'} f₁(v) ≡ β(v) (mod 4k) for each v ∈ V(G).
- Define g : E(G) → Z_{4k} such that g(e) = 2k if e is a positive edge and g(e) = 0 if e is a negative edge. Thus ∂_{D'}g(v) ≡ 2k ⋅ d⁺(v) (mod 4k) for each v ∈ V(G).
- Let $f = f_1 + g$. Then $f : E(\hat{G}) \to \mathbb{Z}_{4k}$ satisfies the followings: (1) For each positive edge e, $f(e) = f_1(e) + 2k \in \{2k - 1, 2k + 1\}$. (2) For each negative edge e, $f(e) = f_1(e) \in \{-1, 1\}$. (3) $\partial_{D'}f(v) = \partial_{D'}f_1(v) + \partial_{D'}g(v) = \beta(v) + 2k \cdot d^+(v) \equiv 0 \pmod{4k}$. Such (D', f) is a circular $\frac{4k}{2k-1}$ -flow in (G, σ) .

Flows in Eulerian signed graphs

Circular flow in mono-directed Eulerian signed graphs

Conclusion

Circular $\frac{4k}{2k-1}$ -flow in Eulerian signed graphs

Theorem [J. Li, Y. Wu and C.Q. Zhang 2020]

Let G be a (3k - 3)-edge-connected graph, where $k \ge 3$. For any $(2k, \beta)$ -boundary of G, G admits a $(2k, \beta)$ -orientation.

Theorem [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

For any Eulerian signed graph (G, σ) , if the underlying graph G is (6k - 2)-edge-connected, then $\Phi_c(G, \sigma) \leq \frac{4k}{2k-1}$.

Corollary

Every signed bipartite planar graph of girth at least 6k - 2 admits a circular $\frac{4k}{2k-1}$ -coloring, i.e., it admits a homomorphism to C_{-2k} .

Circular flow in mono-directed Eulerian signed graphs

Conclusion 000000

Coloring of signed bipartite planar graphs

Bipartite folding lemma

Bipartite folding lemma [R. Naserasr, E. Rollova and E. Sopena 2013]

Let (G, σ) be a signed bipartite plane graph whose shortest negative cycle is of length 2k. Assume that C is a facial cycle that is not of length 2k. Then there are vertices v_{i-1}, v_i , and v_{i+1} consecutive in the cyclic order of the boundary of C, such that identifying v_{i-1} and v_{i+1} , after a possible switching at one of the two vertices, the resulting signed graph remains a signed bipartite plane graph whose shortest negative cycle is still of length 2k.

Coloring of signed bipartite planar graphs

Extending partial pre-orientation

Lemma [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Let G be a (6k-2)-edge-connected Eulerian graph and let z_0 be a vertex of degree 6k-2 of G. For any $(4k,\beta)$ -boundary β and its corresponding pre-orientation D_{z_0} on the edges incident to z_0 satisfying that $\overleftarrow{d_{D_{z_0}}(z_0)} - \overrightarrow{d_{D_{z_0}}(z_0)} \equiv \beta(z_0) \pmod{4k}$, D_{z_0} can be extended to a $(4k,\beta)$ -orientation on G.

- Given a (4k, β)-boundary β, let D_{z0} be the pre-orientation on the edges incident to z0 achieving β(z0).
- Let D'_{z0} be a pre-orientation obtained from D_{z0} by changing one in-arc, say (w, z₀), of z₀ to an out-arc and let β' be defined as follows:

$$\beta'(v) = \begin{cases} \beta(v) + 2 & \text{if } v = z_0, \\ \beta(v) - 2, & \text{if } v = w, \\ \beta(v), & \text{otherwise.} \end{cases}$$

• We claim that D_{z_0} is extendable if and only if D'_{z_0} is extendable.

24 / 32

Coloring of signed bipartite planar graphs

Mapping signed bipartite planar graphs to C_{-2k}

Theorem [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

Every signed bipartite planar graph of negative-girth at least 6k - 2 admits a homomorphism to C_{-2k} .

Assume that (G, σ) is a minimum counterexample and (G^*, σ^*) is its dual signed graph.

By the bipartite folding lemma, we may assume that (G, σ) is a signed bipartite plane graph of negative-girth 6k - 2 in which each facial cycle is a negative (6k - 2)-cycle and (G, σ) admits no circular $\frac{4k}{2k-1}$ -coloring.

Coloring of signed bipartite planar graphs

Sketch of the proof

- Assume that (X, X^c) is an edge-cut of size smaller than 6k − 2 of G^{*} and |X| is minimized. Let Ĥ and Ĥ^c denote the signed subgraphs of Ĝ^{*} induced by X and X^c.
- First, G^{*}/Ĥ admits a circular ^{4k}/_{2k-1}-flow by the minimality of (G, σ). Let D be such a (4k, β)-orientation on G^{*}/Ĥ with β(v) ≡ 2k ⋅ d⁺(v) (mod 4k).
- Now we consider $G_1 = \hat{G}^* / \hat{H}^c$ and we denote by z_0 the new vertex obtained by contraction.
 - Let D_{z_0} denote the orientation of D restricted on $E(z_0)$ and let β be a $(4k, \beta)$ -boundary of G_1 such that $\beta(z_0) = \overleftarrow{d_{D_{z_0}}}(z_0) \overrightarrow{d_{D_{z_0}}}(z_0)$.
 - We add 6k 2 d(z₀) many edges connecting z₀ with one vertex of G₁ z₀, and orient them half toward z₀ and half away from z₀. We denote the resulting graph by G'₁ and the resulting pre-orientation at z₀ by D'_{z₀}.
 - the resulting graph by G'_1 and the resulting pre-orientation at z_0 by D'_{z_0} . • We conclude that D'_{z_0} can be extended to a $(4k, \beta)$ -orientation on G'_1 , thus also a $(4k, \beta)$ -orientation on G_1 .

So the $(4k, \beta)$ -orientation of \hat{G}^*/\hat{H} is extended to \hat{H} and thus \hat{G}^* admits a $(4k, \beta)$ -orientation with $\beta(v) \equiv 2p \cdot d^+(v) \pmod{4k}$.

- Start from Jaeger's flow conjecture
- Circular coloring of signed graphs
- Circular flow in mono-directed signed graphs
- Bipartite analog of Jaeger-Zhang conjecture
- 2 Circular flow in mono-directed Eulerian signed graphs
 - Preliminaries
 - Flows in Eulerian signed graphs
 - Coloring of signed bipartite planar graphs

3 Conclusion

- Results
- Questions

Results

Circular flow in mono-directed Eulerian signed graphs 0000000000

Conclusion

Recent results

Circular flow index of highly edge-connected signed graphs

Edge-Conn.	Conjectured Φ_c	Known Φ_c^1
2	$\Phi_c \leq 10$ [1]	$\Phi_c \leq 12$
3	$\Phi_c \leq 5$ [2]	$\Phi_c \leq 6$
4		$\Phi_c \leq 4 \text{ (tight)}$
5	$\Phi_c \leq 3$ [3]	
6		$\Phi_c < 4$
7+planar		$\Phi_c \leq \frac{12}{5}$ [LSWW22+]
10+planar		$\Phi_c \leq \frac{16}{7}$ [LSWW22+]
6 <i>p</i> – 2		$\Phi_c \leq \frac{8p-2}{4p-3}$
6 <i>p</i> - 1		$\Phi_c \leq \frac{4p}{2p-1}$
6 <i>p</i>		$\Phi_c < \frac{4p}{2p-1}$
6p + 1		$\Phi_c \leq \frac{8p+2}{4p-1}$
6 <i>p</i> + 2		$\Phi_c \leq \frac{2p+1}{p}$
6 <i>p</i> + 3		$\Phi_c < \frac{2p+1}{p}$

¹Almost all of the results are from [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022 \pm] $2022 \pm$

Conjectures

Questions

Lemma [J. Li, R. Naserasr, Z. Wang and X. Zhu 2022+]

A graph G admits a circular $\frac{p}{q}$ -flow if and only if $T_2(G, +)$ admits a circular $\frac{2p}{q}$ -flow.

Reformulate Tutte's 5-flow conjecture:

Conjecture [1]

Every 2-edge-connected signed graph admits a circular 10-flow.

Proposition [Z. Pan and X. Zhu 2003]

For any rational number $r \in [2, 10]$, there exists a 2-edge-connected signed graph whose circular flow index is r.

Questions Conjectures

Reduction of Tutte's 5-flow conjecture to 3-edge-connected cubic graphs

Conjecture [2]

Every 3-edge-connected signed graph admits a circular 5-flow.

• Stronger Tutte's 3-flow conjecture

Conjecture [3]

Every 5-edge-connected signed graph admits a circular 3-flow.

• Tutte's 4-flow conjecture restated

Conjecture

Every 2-edge-connected signed Petersen-minor-free graph admits a circular 8-flow.

Questions

Discussion

- Given an integer $k \ge 1$, what is the smallest integer $f_1(k)$ such that every $f_1(k)$ -edge-connected signed graphs admits a circular $\frac{2k+1}{k}$ -flow?
- Given an integer $k \ge 1$, what is the smallest integer $f_2(k)$ such that every $f_2(k)$ -edge-connected signed graphs admits a circular $\frac{4k}{2k-1}$ -flow?
- For Eulerian signed graphs:
 - Given an integer k ≥ 1, what is the smallest integer g(k) such that every (negative-)g(k)-edge-connected Eulerian signed graphs admits a circular ^{4k}/_{2k-1}-flow?

Conclusion

Introd	uction
0000	0000000000

Questions

Thanks for your attention!